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Abstract
The endocrine system is an essential regulator of the osmoregulatory organs that enable euryhaline fishes to maintain 
hydromineral balance in a broad range of environmental salinities. Because branchial ionocytes are the primary site for 
the active exchange of Na+, Cl−, and Ca2+ with the external environment, their functional regulation is inextricably linked 
with adaptive responses to changes in salinity. Here, we review the molecular-level processes that connect osmoregulatory 
hormones with branchial ion transport. We focus on how factors such as prolactin, growth hormone, cortisol, and insulin-like 
growth-factors operate through their cognate receptors to direct the expression of specific ion transporters/channels, Na+/
K+-ATPases, tight-junction proteins, and aquaporins in ion-absorptive (freshwater-type) and ion-secretory (seawater-type) 
ionocytes. While these connections have historically been deduced in teleost models, more recently, increased attention has 
been given to understanding the nature of these connections in basal lineages. We conclude our review by proposing areas 
for future investigation that aim to fill gaps in the collective understanding of how hormonal signaling underlies ionocyte-
based processes.
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Introduction

Fishes, the most numerous and diverse vertebrates, consist 
of three major classes: Agnatha (jawless fishes), Chondrich-
thyes (cartilaginous fishes), and Osteichthyes (bony fishes) 
(Moyle and Cech 2004). Teleosts (class Osteichthyes; sub-
class Actinopterygii; infraclass Neopterygii; division Tel-
eostei) and lampreys (members of class Agnatha) typically 
maintain extracellular fluids between 270 and 400 mOsm/
kg, with Na+ and Cl− constituting the major dissolved ions 
(Hwang and Lin 2014; Ferreira-Martins et al. 2016). There-
fore, when residing in dilute freshwater (FW) environments, 
they are at risk for both excessive hydration and salt loss 
across body surfaces. To counterbalance this situation, the 
gill actively absorbs ions (Na+, Cl−, and Ca2+) from the 
external environment, while the kidney and urinary bladder 

produce large volumes of dilute urine (Marshall and Grosell 
2006; Kaneko et al. 2008). Lampreys and teleosts residing in 
seawater (SW), on the other hand, must excrete ions gained 
by passive diffusion from the surrounding environment and 
replace water that is lost via osmosis. While multiple seg-
ments of the gastrointestinal tract work in concert to promote 
solute-linked water absorption (Barany et al. 2020; Takei 
2021), the gill and kidney secrete monovalent (Na+, Cl−) and 
divalent (Mg2+, Ca2+, and SO4

2−) ions into the external envi-
ronment, respectively (Kaneko et al. 2008). Cartilaginous 
fishes are typically marine in their distribution and operate 
as osmoconformers by retaining urea and trimethylamine 
oxide while maintaining internal Na+ and Cl− concentrations 
below those of SW (Hwang and Lin 2014). Hagfishes (mem-
bers of class Agnatha) are marine osmoconformers with lim-
ited capacities to regulate internal ion concentrations.

While most fishes inhabit a single aquatic environment 
characterized as either FW (≤ 0.5‰) or SW (30–40‰), a 
relatively small percentage of species (~ 5%) are considered 
“euryhaline” and can withstand both conditions (Schultz and 
McCormick 2013). Euryhaline species possess the capacity 
to rapidly modulate ion- and water-transporting activities 
within the gill, gastrointestinal tract, kidney, and urinary 
bladder following changes in salinity (Takei et al. 2014). In 
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turn, they offer valuable opportunities to resolve how cel-
lular and molecular processes within osmoregulatory organs 
enable fish to transition between environmental salinities. 
Since the branchial exchange of ions with the external envi-
ronment is critical for maintaining osmoregulatory balance, 
decades of focused investigation have pursued how “iono-
cytes”, cells specialized for Na+, Cl−, and Ca2+ transport, 
operate relative to environmental salinity (Evans et al. 2005; 
Dymowska et al. 2012).

Molecular aspects of ionocyte function

Freshwater‑type ionocytes in teleosts

Historically, various models have been put forth to 
explain how the branchial ionocytes of FW-acclimated 
fishes actively absorb ions against strong electrochemical 
gradients (Hwang and Lin 2014). The contrasting models of 
FW-type ionocytes reflect, in part, the evolution of different 
strategies for Na+ and Cl− uptake across the teleost lineage 
(Dymowska et al. 2012; Takei et al. 2014; Yan and Hwang 
2019). For euryhaline teleosts, the most comprehensive 
models of FW-type ionocytes are derived from rainbow trout 
(Oncorhyncus mykiss), Mozambique tilapia (Oreochromis 
mossambicus), and Japanese medaka (Oryzias latipes) 
(Dymowska et al. 2012; Hsu et al. 2014; Inokuchi et al. 
2022). For basal fishes, recent progress has been made in the 
development of FW-type ionocyte models for sea lamprey 
(Petromyzon marinus) (Ferreira-Martins et  al. 2021). 
Without question, insights into how ionocytes operate in 
stenohaline zebrafish (Danio rerio) have supported progress 
in the euryhaline species listed above (Guh et al. 2015).

In FW-type ionocyte models for salmonids, largely 
conceived from findings in rainbow trout, two distinct 
subtypes absorb environmental Na+, Cl−, and Ca2+. In one 
subtype, termed peanut lectin agglutinin positive (PNA+) 
cells, Na+/H+ exchangers 2 and 3 (Nhe2 and -3; Slc9a2 and 
-3), epithelial Ca2+ channel (ECaC), and an Slc26-family 
anion exchanger are expressed in the apical membrane. 
Na+/K+-ATPase (Nka) mediates the basolateral movement 
of Na+, while an uncharacterized pathway allows for the 
exit of Cl− (Ivanis et al. 2008; Dymowska et al. 2012). 
The other ionocyte subtype, termed PNA− cells, expresses 
an apical Na+ channel, purported to be acid-sensing ion 
channel 4 (Asic4), along with apical H+-ATPase. Na+/
HCO3

− cotransporter 1 (Nbce1; Slc4a4) and Nka are 
expressed in PNA− cells to mediate the basolateral exit of 
Na+ (Parks et al. 2007; Dymowska et al. 2014).

Like in trout, there are multiple FW-type ionocytes 
operating within the branchial epithelium of euryhaline 
Mozambique tilapia. “Type II” ionocytes express a Na+/
Cl− cotransporter (Ncc) in the apical membrane to transport 

Na+ and Cl− into the cell interior (Hiroi et al. 2008). This 
Ncc is denoted Ncc2 (Slc12a10) and is not a member of 
the “conventional” Ncc1 (Slc12a3) clade (Motoshima et al. 
2023). Nka and Clc family Cl− channel 2c (Clc2c) support 
the basolateral transport of Na+ and Cl− from the ionocyte 
interior into the blood plasma, respectively (Pérez-Rius et al. 
2015; Wang et al. 2015; Breves et al. 2017b). While Ncc2-
expressing ionocytes operate in euryhaline and stenohaline 
species spanning teleost clades (Wang et al. 2009; Hsu 
et al. 2014; Inokuchi et al. 2017; Lema et al. 2018), they are 
conspicuously absent in salmonids (Hiroi and McCormick 
2012). In tilapia, a second type of Na+-absorptive ionocyte 
which expresses Nka, coined “Type III” ionocytes, is 
characterized by the apical localization of Nhe3 (Hiroi et al. 
2008). The density of Type III ionocytes (along with nhe3 
expression) increases in the gill filaments of tilapia exposed 
to low-Na+ conditions (Inokuchi et al. 2008, 2009).

Freshwater‑type ionocytes in basal fishes

In lampreys, two FW-adaptive ionocytes have been proposed to 
support ion uptake (Bartels and Potter 2004; Reis-Santos et al. 
2008; Ferreira-Martins et al. 2021). These two ionocytes differ 
most notably in their expression of Nka and H+-ATPase. A 
“larval FW ionocyte” highly expresses H+-ATPase but shows 
low expression of Nka, whereas a “FW ionocyte” (observed in 
larvae as well as post-metamorphic and adult stages) strongly 
expresses both H+-ATPase and Nka. Branchial H+-ATPase 
E subunit (atp6v1e) expression markedly decreases when 
lamprey acclimate to elevated salinities (Reis-Santos et al. 
2008; Ferreira-Martins et al. 2016). The ionoregulatory role 
of H+-ATPase in FW gills entails coordination with a pathway 
for the electrochemically neutral uptake of environmental Na+. 
The absorption of environmental Na+ by lampreys appears to 
involve the epithelial Na+ channel (ENaC) (Ferreira-Martins 
et al. 2016), while Ncc supports both Na+ and Cl− uptake 
(Barany et al. 2021b). Accordingly, both ENaC and Ncc are 
highly expressed in the gills of FW-acclimated lamprey and 
exhibit decreased expression during SW acclimation, although 
which particular cell-types express these transporters has not 
been fully elucidated. The co-involvement of an apical car-
bonic anhydrase-powered Cl−/HCO3

− exchanger and a baso-
lateral Cl−-channel in Cl− uptake has also been proposed, but 
the molecular identities of these transporters are unresolved 
(Bartels and Potter 2004; Ferreira-Martins et al. 2021).

Seawater‑type ionocytes in teleosts

Within the branchial epithelium of marine/SW-acclimated 
teleosts, SW-type ionocytes actively secrete excess Na+ and 
Cl− into the environment. SW-type ionocytes express Nka 
and Na+/K+/2Cl− cotransporter 1 (Nkcc1; Slc12a2) in the 
basolateral membrane to energize and facilitate the Na+- and 
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K+-coupled passage of Cl− from blood plasma into the cell 
interior (Marshall and Grosell 2006; Kaneko et al. 2008). 
The catalytic α-subunit of the Nka enzyme contains binding 
sites for ATP, Na+, and K+ (Geering 2008). Two distinct 
isoforms of the α-subunit (α1a and α1b) were identified in 
salmonids, first by Richards et al. (2003). In salmonids and 
cichlids, these isoforms have functional capacities exclusive 
to either FW (α1a) or SW (α1b), with branchial expression 
“switching” from one to the other during salinity transitions 
(Bystriansky et al. 2006; Nilsen et al. 2007; McCormick 
et al. 2009; Tipsmark et al. 2011; Dalziel et al. 2014). Api-
cally located cystic fibrosis transmembrane conductance 
regulator 1 (Cftr1) enables Cl− to exit SW-type ionocytes 
and to enter the external environment (Marshall and Gro-
sell 2006). With Nkcc1 and Cftr1 forming the pathway for 
transcellular Cl− excretion, tight-junction complexes com-
posed of claudins (Cldns) between ionocytes and adjacent 
accessory cells provide the paracellular route for Na+ to exit 
the gill (Marshall and Grosell 2006; Tipsmark et al. 2008b; 
Bui and Kelly 2014). Attendant increases in branchial Nka, 
Nkcc1, and Cftr1 expression coincide with SW-acclima-
tion. For this reason, all three ion transporters are widely 
employed as markers of branchial ion-secretory capacity.

Seawater‑type ionocytes in basal fishes

The pathways for branchial Cl− secretion are far less resolved 
in basal fishes than in teleosts. Cftr orthologs are present in 
the genomes of sturgeon, bichir, and coelacanth (Shaughnessy 
and Breves 2021), yet none of these orthologs have been func-
tionally characterized. A single Cftr ortholog was identified 
in sea lamprey; however, cftr expression is low in all larval, 
juvenile, and adult tissues aside from intestine (Ren et al. 
2015). Moreover, compared with human Cftr, lamprey Cftr 
exhibits limited Cl− conductance and reduced activation by 
cAMP (Cui et al. 2019). Given the limited Cl− conductance of 
lamprey Cftr and the lack of a cftr transcriptional response to 
SW exposure (Shaughnessy et al. unpublished), it is question-
able whether Cftr mediates the secretion of Cl− by lamprey 
ionocytes known to express Nka and Nkcc1 (Shaughnessy and 
McCormick 2020). A recent analysis of the updated inshore 
hagfish (Eptatretus burgeri) genome assembly (Yu et al. 2023; 
Marlétaz et al. 2023) indicates that a cftr ortholog may be 
absent in hagfishes altogether (Yamaguchi et al. 2023).

Hormones and ionocytes

The endocrine system has long been appreciated as a central 
player in the homeostatic regulation of salt and water bal-
ance in fishes. Perturbations in internal osmotic and ionic 
conditions caused by changes in environmental salinity elicit 

the secretion of hormones that modulate ion- and water-
transport by key osmoregulatory organs. Because these 
regulatory connections are indispensable to maintaining 
hydromineral balance, there is no shortage of literature that 
discusses how hormones impact the osmoregulatory physi-
ology of fishes at the organismal, organ, and cellular levels 
(Hirano 1986; McCormick 2001; Manzon 2002; Evans et al. 
2005; Sakamoto and McCormick 2006; Takei and McCor-
mick 2013; Takei et al. 2014). Therefore, in this review, we 
do not address all established hormonal actions within the 
gills of fishes; rather, we focus on how hormones control the 
molecular components of ionocytes. We focus on the regu-
latory connections identified in euryhaline species but, in 
several instances, reference stenohaline zebrafish for added 
context. An expansive collection of endocrine factors unde-
niably contributes to regulating branchial ionocytes (Evans 
et al. 2005; Takei et al. 2014); however, the identification 
of molecular endocrine targets is largely based on studies 
that focused upon the “classical” FW- and SW-adapting 
hormones in fishes, namely prolactin (Prl), growth hormone 
(Gh), and cortisol. While this review is heavily weighted 
toward describing the actions of these three hormones, we 
also highlight promising areas for future investigations into 
how additional endocrine factors regulate ionocytes.

Freshwater‑adaptive endocrine control

Prolactin

Euryhaline models, and most famously, mummichogs 
(Fundulus heteroclitus), supported the discovery that 
pituitary hormones are key regulators of osmoregulatory 
organs (Pickford and Atz 1957). Pickford (1953) and Bur-
den (1956) reported that hypophysectomized mummichogs 
could not survive in FW, and that pituitary brei injections 
rescued them from death. Prl was subsequently identified 
as the pituitary factor that enables individuals to reside in 
dilute environments (Pickford and Phillips 1959). Over the 
succeeding decades, it was firmly established that through 
its highly conserved actions on teleost osmoregulatory 
organs, Prl stimulates a spectrum of activities befitting FW-
acclimation (Loretz and Bern 1982; Hirano 1986; Manzon 
2002; Sakamoto and McCormick 2006; Breves et al. 2014a, 
2020). Accordingly, pituitary prl expression and plasma 
Prl levels rise when fish acclimate to low-salinity condi-
tions (Lee et al. 2006; Hoshijima and Hirose 2007; Fuentes 
et al. 2010; Seale et al. 2012). The notion that ionocytes 
are targets of Prl signaling was supported decades ago by 
the observation that Prl influences ionocyte populations in 
Mozambique and Nile (O. niloticus) tilapia (Herndon et al. 
1991; Pisam et al. 1993; Flik et al. 1994). With respect 
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to directing ionoregulatory function, Zhou et al. (2003) 
showed that exogenous Prl stimulated ion uptake in rain-
bow trout branchial epithelium. Patterns of Prl binding and 
prl receptor (prlr) gene expression reported in both eury-
haline and stenohaline FW species further associated Prl 
signaling with ionocytes (Dauder et al. 1990; Prunet and 
Auperin 1994; Weng et al. 1997; Rouzic et al. 2002; Santos 
et al. 2001; Lee et al. 2006; Huang et al. 2007; Fiol et al. 
2009; Breves et al. 2013). Additionally, the Prlr was local-
ized to branchial ionocytes of tilapia and sea bream (Sparus 
aurata) (Weng et al. 1997; Santos et al. 2001).

Only recently have investigations into the actions of Prl 
become unencumbered by a paucity of molecular tools to 
study FW-type ionocytes. For example, the characterization 
of tilapia Type II ionocytes by Hiroi et al. (2008) provided 
an opportunity to link Prl with a specific molecular pathway 
for ion uptake, particularly Ncc2. Prl enables hypophysecto-
mized tilapia to recruit Ncc2-expressing ionocytes during FW 
acclimation, an activity that does not require systemic inter-
mediaries (Breves et al. 2010c; Inokuchi et al. 2015; Wata-
nabe et al. 2016) (Fig. 1). Prl similarly regulates branchial 
ncc2 expression in euryhaline mummichogs (Breves et al. 
2022) and Japanese medaka (Bossus et al. 2017), as well 
as in stenohaline zebrafish (Breves et al. 2013). Activated 
Prlrs can modulate the transcription of target genes through 
JAK/STAT and ERK/MAPK signaling (Huang et al. 2007; 
Fiol et al. 2009; Chen et al. 2011). In medaka, Prl stimu-
lates ncc2 via STAT5 activation rather than through ERK- 
or AKT-dependent pathways (Bollinger et al. 2018). Since 
Clc2c is expressed within Ncc2-expressing ionocytes to 
facilitate basolateral Cl− movement (Pérez-Rius et al. 2015; 
Wang et al. 2015), it is fitting that Prl coordinately promotes 
clc2c and ncc2 expression (Breves et al. 2017b; Breves 2019) 
(Fig. 1). In contrast, branchial clc3 expression in tilapia is not 
controlled by Prl (Tang and Lee 2011; Breves et al. 2017b).

The potential for Ncc-dependent pathways to operate 
in the osmoregulatory organs of cartilaginous and jaw-
less fishes has recently received increased attention. In 
Japanese-banded houndshark (Triakis scyllium), a “con-
ventional” ncc1 (slc12a3) is expressed within a subpop-
ulation of gill ionocytes, termed type-B cells, where its 
expression increases upon transfer from full-strength SW 
to 30% SW (Takabe et al. 2016). Given that elasmobranch 
genomes are devoid of Ncc2-encoding genes (Motoshima 
et al. 2023), Ncc1 may assume a role in branchial Na+ and 
Cl− absorption in elasmobranchs. Similarly, the branchial 
expression of ncca (ncc1) in sea lamprey is attenuated dur-
ing SW acclimation (Ferreira-Martins et al. 2016; Barany 
et al. 2021b). Given the Prlr expression in lamprey gills, 
the next step is to assess whether the recently found Prl 
participates in modulating ncca when lamprey transition 
between FW and marine environments (Gong et al. 2020).

In two lampreys (P. marinus and Lethenteron reissneri), 
the expression of gene transcripts encoding ENaC subunits 
increases under low-Na+ conditions (Ferreira-Martins et al. 
2016; Tseng et al. 2022). Thus, ENaC may provide a means 
for lampreys to absorb Na+ from FW; this strategy for Na+ 
absorption is absent in cartilaginous and ray-finned fishes 
(Ferreira-Martins et al. 2021). Curiously, branchial gene 
expression of an ENaC subunit, scnn1a, decreases when 
inshore hagfish experience high-salinity conditions (Yama-
guchi et al. 2023). Despite hagfishes exhibiting plasma Na+ 
concentrations close to SW, this response suggests that Na+ 
movement in the gill may be more complex than previously 
thought. To our knowledge, endocrine control of ENaC sub-
unit expression has not been addressed in any cyclostome 
and, in an analogous fashion as ncca, should be probed for 
links to the Prlrs identified in hagfish and lamprey (Gong 
et al. 2020).

While branchial ionocytes leveraging Ncc operate in 
species across the three major fish lineages, they are not 
found within salmonids (Hiroi and McCormick 2012). In 
turn, an apically located Cl−/HCO3

− exchanger (Slc26a6) 
may provide a pathway for Cl− absorption by PNA+ 
ionocytes in rainbow trout and other salmonids (Boyle 
et al. 2014; Leguen et al. 2015). Branchial slc26a6a2 is 
elevated in FW- versus SW-acclimated Atlantic salmon 
(Takvam et al. 2021) and is a transcriptional target of Prl 
signaling (Breves et al. unpublished). Therefore, Slc26a6a2 
may constitute a pathway for Prl-stimulated Cl− uptake in 

Fig. 1   Schematic diagrams of “Type II” and “Type III” ionocytes in 
Mozambique tilapia showing the stimulatory (arrows with a “ + ”) 
effects of prolactin (Prl) (see text for citations). Nka-α1a and Clc2c 
are included in these models based upon the expression of their 
associated gene transcripts; however, they have yet to be definitively 
assigned to tilapia ionocytes. Apical and basolateral sides are pre-
sented at the top and bottom of cells, respectively. Aqp3 aquaporin 3, 
Clc2c Clc family Cl− channel 2c, Ncc2 Na+/Cl− cotransporter 2, Nka 
Na+/K+-ATPase, Prl prolactin
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species lacking Ncc-expressing ionocytes (Zhou et al. 2003). 
Because Leguen et al. (2015) reported clc2 expression in 
trout ionocytes (putative PNA+ cells), Prl-based control 
of salmonid clc2 isoforms also warrants investigation. 
Studies of this nature will enable comparisons of Prl-Clc2 
connectivity between species that do, and do not, leverage 
Ncc2-expressing ionocytes.

Within the PNA− ionocytes of trout, Nbce1 supports the 
absorption of environmental Na+ by cotransporting Na+ 
and HCO3

− across the basolateral membrane (Parks et al. 
2007; Leguen et al. 2015). The apical entry of Na+ into 
PNA− cells was proposed to occur via Asic4 through its 
electrochemical linkage to H+-ATPase (Dymowska et al. 
2014). Under this scenario, intracellular HCO3

− is supplied 
by carbonic anhydrase (Parks et al. 2007). In tilapia, Nbce1 
operates in the basolateral membrane of Ncc2-expressing 
ionocytes (Furukawa et al. 2011). To our knowledge, Nbce1, 
Asic4, H+-ATPase, and carbonic anhydrase have not been 
associated with Prl signaling in trout or tilapia.

In addition to Type II ionocytes, a second type of 
Na+-absorptive ionocyte in tilapia (Type III ionocytes) 
is characterized by the apical expression of Nhe3 (Hiroi 
et al. 2008). Prl promotes nhe3 gene expression in tilapia 
gill filaments (Inokuchi et al. 2015; Watanabe et al. 2016) 
whereas it has no such effect in mummichogs or zebrafish 
(Breves et  al. 2013, 2022) (Fig. 1). Because salmonids 
express Nhe2 and -3 within PNA+ ionocytes, they will 
prove key in resolving the extent to which Prl regulates Nhes 
among teleosts (Ivanis et al. 2008; Hiroi and McCormick 
2012). Unfortunately, the lack of information on Nhes 
in lamprey ionocytes precludes consideration of a Prl-
Nhe connection (Ferreira-Martins et  al. 2021). Recent 
pharmacological experiments performed in zebrafish 
implicated K+-dependent Na+/Ca2+ exchangers (Nckxs) in 
mediating Na+ absorption (Clifford et al. 2022). Should roles 
emerge for Nckxs in supporting Na+ uptake by euryhaline 
species, Nckx isoforms would be additional candidates for 
regulation by Prl.

Nka plays a critical role in energizing ion transport 
by FW- and SW-type ionocytes, with the reciprocal 
expression of nka-α1a and -α1b first described in salmonids 
transitioning between FW and SW environments (Richards 
et al. 2003; Mackie et al. 2005; Bystriansky et al. 2006; 
Madsen et al. 2009; McCormick et al. 2009; Dalziel et al. 
2014). Tilapia also undergo nka-α1a and -α1b “switching” 
upon salinity changes, and Prl stimulates the “FW-inducible” 
nka-α1a isoform (Tipsmark et al. 2011; Breves et al. 2014b; 
Inokuchi et al. 2015; Watanabe et al. 2016) (Fig. 1). Thus 
far, the capacity for Prl to promote nka-α1a expression 
seems specific to tilapia, as Prl fails to stimulate nka-α1a 
in Atlantic salmon (Tipsmark and Madsen 2009; Breves 
et al. unpublished). In zebrafish, nka-α1a1a.2 is expressed 
in Ncc2-expressing ionocytes responsible for Cl− uptake 

(Liao et al. 2009); however, Prl has no effect on branchial 
nka-α1a1a.2 expression (Breves 2019). The auxiliary 
γ-subunit of Nka (also called Fxyd) participates in the 
regulation of enzymatic activity by associating with the 
Na+/K+ pump complex (Geering 2008; Pavlovic et al. 2013). 
Among the Fxyd isoforms identified in teleosts, Fxyd11 is 
predominately expressed in the gills where it interacts with 
Nka (Tipsmark 2018; Wang et al. 2008; Saito et al. 2010). 
In tilapia, Prl and cortisol synergistically promote fxyd11 
expression in FW (Tipsmark et al. 2011).

For teleosts residing in FW, greater than 90% of whole-
body Ca2+ uptake is mediated by branchial/epidermal 
ionocytes (Flik et  al. 1996; Lin and Hwang 2016). 
Transcellular Ca2+ uptake entails the apical entry of Ca2+ 
through ECaC (Trpv5/6) followed by basolateral exit via 
Ca2+-ATPase 2 (Pmca2) and Na+/Ca2+ exchanger 1 (Ncx1) 
(Flik et al. 1996; Liao et al. 2007). Prl is hypercalcemic 
in multiple teleosts (Pang et  al. 1978; Fargher and 
McKeown 1989; Flik et al. 1989, 1994; Kaneko and Hirano 
1983; Chakraborti and Mukherjee 1995; Wongdee and 
Charoenphandhu 2013), at least in part by stimulating 
branchial Pmca activity (Flik et  al. 1996). Future 
investigations employing both euryhaline and stenohaline 
FW models are needed to determine whether Prl promotes 
ECaC and Ncx1 expression in parallel with promoting Pmca 
activity to sustain Ca2+ uptake.

Aquaporins (Aqps) constitute a superfamily of integral 
membrane proteins that facilitate passive movements 
of water and small non-ionic compounds across cell 
membranes (Cerdà and Finn 2010). Multiple branchial cell 
types, including ionocytes, express a subset of Aqps (Lignot 
et al. 2002; Hirata et al. 2003; Watanabe et al. 2005; Tse 
et al. 2006; Brunelli et al. 2010; Tingaud-Sequeira et al. 
2010; Tipsmark et al. 2010; Jung et al. 2012; Breves et al. 
2016; Ruhr et al. 2020). Prl stimulates the expression of 
the aquaglyceroporin, Aqp3, in Mozambique tilapia (Breves 
et al. 2016) (Fig. 1), Japanese medaka (Ellis et al. 2019), 
and mummichogs (Breves et al. 2022). On the other hand, 
Prl does not promote branchial aqp1 expression (Ellis et al. 
2019). Although the Aqp-specific effects of Prl suggest 
that Aqp3 plays an important role in FW-acclimated fish, 
there is still no clear picture of how it underlies adaptive 
processes. A role for Aqp3 in enhancing transepithelial 
water movement appears unlikely because branchial water 
exchange is disadvantageous to systemic hydromineral 
balance. Alternatively, Aqp3 may render ionocytes 
osmosensitive to extracellular conditions and/or capable of 
efficiently regulating their volume (Cutler and Cramb 2002; 
Watanabe et al. 2005; Tipsmark et al. 2010).

Prl has long been recognized for its effects on membrane 
permeability which result in a general “tightening” to mini-
mize diffusive ion loss (Potts and Evans 1966; Hirano 1986). 
Paracellular solute movements across epithelia are governed 
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in large part by the barrier properties of tight-junction com-
plexes composed of Cldn and occludin proteins (Chasiotis 
et al. 2012). In tilapia and medaka, FW acclimation entails 
the increased expression of branchial cldn28a and -28b, 
respectively (Tipsmark et al. 2008a; Bossus et al. 2015). 
In Atlantic salmon and medaka, Prl stimulates cldn28a and 
-28b gene expression (Tipsmark et al. 2009; Bossus et al. 
2017). Prl-Cldn28 connectivity thus provides a means to reg-
ulate tight-junction properties for minimizing ion loss in FW. 
Occludin expression is also correlated with environmental 
salinity (Chasiotis et al. 2009; Kumai et al. 2011; Whitehead 
et al. 2011), making it a good candidate for regulation by Prl; 
however, to our knowledge, this link has yet to be examined.

Teleosts express two separate Prlrs, denoted Prlr1 (Prlra) 
and -2 (Prlrb), that differ in their responses to salinity changes 
(Huang et al. 2007; Pierce et al. 2007; Fiol et al. 2009; Tomy 
et al. 2009; Rhee et al. 2010; Breves et al. 2011, 2013; Chen 
et al. 2011; Flores and Shrimpton 2012). Branchial prlr1 has 
emerged as a transcriptional target of Prl in tilapia, mummic-
hogs, and zebrafish (Inokuchi et al. 2015; Breves et al. 2013, 
2022). In turn, Prl seemingly upregulates the expression of 
Prlr1 to enhance the sensitivity of ionocytes to circulating 
hormone during FW acclimation (Weng et al. 1997). Alter-
natively, prlr2/b is typically insensitive to Prl (Breves et al. 
2013, 2022; Inokuchi et al. 2015), which is not surprising 
given that its expression is upregulated by the hyperosmotic 
extracellular conditions associated with SW acclimation (Fiol 
et al. 2009; Inokuchi et al. 2015; Seale et al. 2019).

In tandem with initiating active ion uptake, euryhaline spe-
cies must attenuate branchial ion secretion when transitioning 
from SW to FW. While promoting the recruitment of FW-type 

ionocytes and the expression of their associated ion transport-
ers, Prl simultaneously dampens cellular and molecular phe-
notypes appropriate for SW conditions. For instance, Herndon 
et al. (1991) observed that Prl reduced the size and number 
of SW-type ionocytes in tilapia. At the molecular level, Prl 
inhibits the transcription of nkcc1 and cftr1 within the SW-
type ionocytes of medaka and mummichogs (Bossus et al. 
2017; Breves et al. 2022) (Fig. 2). Prl also inhibits branchial 
Nka activity and nka-α1b expression (Pickford et al. 1970a; 
Sakamoto et al. 1997; Shrimpton and McCormick 1998; Kelly 
et al. 1999; Mancera et al. 2002; Tipsmark and Madsen 2009), 
which, like nkcc1 and cftr1, are elevated in SW to support 
ion secretion. Recall that while Cftr1 is the conduit for Cl− to 
exit SW-type ionocytes, tight junction complexes between 
ionocytes and accessory cells provide the paracellular path 
for Na+ to exit the gill. The cation-selective tight-junctions 
adjacent to ionocytes are composed of multiple Cldn10 iso-
forms (Tipsmark et al. 2008b; Bui and Kelly 2014). Among 
the four mummichog cldn10 genes (cldn10c, -10d, -10e, and 
-10f) upregulated in response to SW (Marshall et al. 2018), 
cldn10f is the only transcript downregulated by Prl (Breves 
et al. 2022) (Fig. 2). Collectively, these nkcc1, cftr1, and 
cldn10f responses illustrate the various means by which Prl 
inhibits branchial salt secretion.

Growth hormone and somatolactin

As discussed in "Growth hormone and insulin-like growth-
factors", Gh is conventionally regarded as a “SW-adapting 
hormone” because it promotes the survival of euryha-
line fishes (and especially salmonids) in hyperosmotic 

Fig. 2   Schematic diagrams 
of FW (freshwater)- and SW 
(seawater)-type ionocytes in 
mummichogs showing the 
stimulatory (arrows with a “ + ”) 
and inhibitory (blocked lines 
with a “−”) effects of prolactin 
(Prl) (see text for citations). 
Where Cl− transport is indicated 
with a question mark, a pathway 
is presumed to exist but remains 
uncharacterized. Apical and 
basolateral sides are presented 
at the top and bottom of cells, 
respectively. Aqp3 aquaporin 3, 
Cftr1 cystic fibrosis transmem-
brane conductance regulator 
1, Cldn10f claudin 10f, Ncc2 
Na+/Cl− cotransporter 2, Nka 
Na+/K+-ATPase, Nkcc1 Na+/
K+/2Cl− cotransporter 1, Prl 
prolactin, TJ tight-junction. 
Figure adapted from Breves 
et al. (2022)
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environments (Björnsson 1997; Takei et al. 2014). To our 
knowledge, there is no direct evidence that Gh plays a role 
in regulating FW-type ionocytes. Nonetheless, Gh receptors 
(Ghrs) are expressed in the gills of euryhaline species regard-
less of whether they are acclimated to FW or SW (Pierce 
et al. 2007; Poppinga et al. 2007; Breves et al. 2011; Link 
et al. 2010); therefore, Ghrs are at least present to mediate 
any direct regulatory connections between circulating Gh 
and FW-type ionocytes. It is certainly plausible that Gh may 
indirectly regulate FW-type ionocytes through the synthesis 
of insulin-like growth-factors (Igfs) (Reinecke et al. 1997; 
Berishvili et al. 2006; Reindl and Sheridan 2012). In fact, 
black-chinned tilapia (Sarotherodon melanotheron) exhibit 
enhanced ghr and igf1 expression in the gill during FW 
acclimation (Link et al. 2010). Similarly, zebrafish exhibit 
elevated pituitary gh and branchial ghr (ghra and -b), igf1a, 
and -2a expression when challenged with ion-poor condi-
tions (Hoshijima and Hirose 2007; Breves et al. unpublished). 
However, whether the Gh/Igf system supports the molecular 
responses of tilapia and zebrafish ionocytes to FW/ion-poor 
conditions has yet to be determined.

Somatolactin (Sl), a member of the Gh/Prl-family of 
pituitary hormones, is a putative regulator of various physi-
ological processes in fishes, particularly Ca2+ homeostasis 
(Kaneko and Hirano 1983). Rainbow trout transferred to 
Ca2+-rich FW exhibit reduced sl gene expression in the pitu-
itary, a response that is consistent with Sl having hypercal-
cemic activity (Kakizawa et al. 1993). Given the substantial 
progress made toward understanding how ionocytes absorb 
environmental Ca2+ (Lin and Hwang 2016), a reassessment 
of whether Sl is indeed hypercalcemic is warranted by prob-
ing targets such as ECaC, Pmca2, and Ncx1.

Cortisol

Cortisol is typically deemed a “SW-adapting hormone” 
because it directly stimulates the activities and/or 
expression of transporters tied to branchial ion-secretion 
("Corticosteroids"). The recognition that cortisol also 
promotes ion uptake in some teleosts arrived after its 
SW-adaptive role was firmly established (McCormick 2001; 
Takei and McCormick 2013). Morphological responses 
to cortisol in the gills of rainbow trout and American eel 
(Anguilla rostrata) suggested that FW-type ionocytes are 
targets of cortisol signaling (Perry et al. 1992), a notion that 
would be later supported with the development of molecular 
tools to more precisely study FW-type ionocytes. In tilapia, 
medaka, and zebrafish, Nhe3 and Ncc2 are expressed in 
distinct ionocyte subtypes (Hiroi and McCormick 2012; Hsu 
et al. 2014; Guh et al. 2015). In zebrafish, cortisol stimulates 
Na+ uptake in a fashion dependent upon the presence of 
Nhe3b-expressing ionocytes and promotes the differentiation 
of Ncc2-expressing ionocytes from a progenitor population 

(Kumai et  al. 2012; Cruz et  al. 2013a). While cortisol 
similarly promotes ncc2 expression in medaka (Bossus et al. 
2017; Ellis et al. 2019), this is not the case in tilapia (Breves 
et al. 2014b; Watanabe et al. 2016).

The FW-adaptive role of cortisol in zebrafish appears to 
be mediated solely by the glucocorticoid receptor (Gr) rather 
than the mineralocorticoid receptor (Mr) (Cruz et al. 2013b). 
The zebrafish Gr is expressed by Nka-rich branchial and epi-
dermal ionocytes, with knockdown of gr, but not mr, dis-
rupting the development of FW-type ionocytes through the 
action of forkheadbox I3 transcription factors (Foxi3a and -b) 
(Cruz et al. 2013b). Exogenous cortisol increases nhe3b, H+-
ATPase α-subunit (atp6v1a), and ecac expression in zebrafish 
embryos. In medaka embryos, knockdown of gr2, but not 
gr1 or mr, decreases the total number of epidermal ionocytes 
(Trayer et al. 2013). Conversely, in FW-acclimated tilapia, it 
was suggested that the Mr, rather than the Gr, controls cor-
tisol-mediated development of Nka-rich branchial ionocytes 
(Wu et al. 2023). Accordingly, mr expression occurs in iono-
cyte precursors/epidermal stem cells (Wu et al. 2023).

In Atlantic salmon, cortisol upregulates gene transcrip-
tion and protein abundance of the “FW-inducible” Nka-α1a 
isoform (Kiilerich et al. 2007b; McCormick et al. 2008; Tip-
smark and Madsen 2009). Cortisol also upregulates the “SW-
inducible” Nka-α1b isoform (Kiilerich et al. 2007b; Tipsmark 
and Madsen 2009; Breves et al. 2024), and thus, the capacity 
of cortisol to increase the expression of both Nka-α1a and 
-α1b is indicative of its dual role in promoting FW- and SW-
adaptive processes. While cortisol was shown to stimulate 
branchial carbonic anhydrase activity in trout (Gilmour et al. 
2011), to our knowledge, no ion transporters expressed in 
salmonid FW-type ionocytes outside of Nka (e.g., Nhe2, -3, 
Asic4, ECaC, and Nbce1) have been linked with cortisol. This 
is a significant knowledge gap, especially given that corti-
sol is known to stimulate Ca2+ uptake by ECaC-expressing 
ionocytes in zebrafish (Lin and Hwang 2016). Reminiscent 
of the scenario for Prl ("Prolactin"), future work is warranted 
to resolve whether cortisol affects Ca2+ uptake pathways in 
euryhaline species.

In addition to promoting key mediators of ion uptake 
(e.g., Ncc2, Nhe3, and Nka-α1a), cortisol promotes FW 
acclimation by decreasing the paracellular permeability of 
the branchial epithelium (Kelly and Wood 2002; Zhou et al. 
2003; Kolosov and Kelly 2017). This important contribution 
to FW acclimation is achieved through the regulation of spe-
cific tight-junction proteins. For instance, cortisol increases 
the expression of cldn8d, -10c, -10d, -10e, -10f, -11a, -27a, 
-30c, and -33b in various euryhaline species (Tipsmark et al. 
2009; Bui et al. 2010; Bossus et al. 2017; Kolosov and Kelly 
2017). Finally, it certainly must be recognized that cortisol 
can promote FW acclimation by acting in concert with Prl 
(Eckert et al. 2001; McCormick 2001). For instance, from a 
molecular perspective, Prl and cortisol act synergistically to 
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promote branchial nka-α1a and cldn28b expression in tila-
pia and medaka, respectively (Watanabe et al. 2016; Bossus 
et al. 2017).

Thyroid hormones

Although limited, there is evidence that thyroid hormones are 
involved in the control of FW-adaptive branchial processes. 
Unfortunately, information is particularly scant regarding 
plasma thyroxine (T4) and 3-3′-5-triiodothyronine (T3) levels 
in euryhaline species undergoing FW acclimation. In sea 
bream, plasma T4 levels increase following transfer from 
SW to FW (Klaren et al. 2007). Alternatively, Mozambique 
tilapia acclimating to FW exhibit rapid declines in both plasma 
T4 and T3 (Seale et al. 2021). While the dynamics of T4 and 
T3 in tilapia suggest a hyposmotically-induced suppression 
of thyroid hormone production at the systemic level, at the 
level of the gill, these changes coincide with an increase in 
the outer-ring deiodination activity of deiodinase 2 (Dio2). As 
shown in mummichogs, Dio2 expression/activity is activated 
by hyposmotic stress (López-Bojórquez et al. 2007). Thus, 
increased branchial Dio2 activity supports the local production 
of T3 at a time when the recruitment of ionocytes is activated 
following entry into FW (Hiroi et al. 2008; Breves et al. 2021). 
Accordingly, tilapia treated with T4 exhibit an increase in the 
density and size of presumed FW-type ionocytes (Peter et al. 
2000). It remains to be seen whether these cellular responses 
to T4 manifest changes in branchial ncc2, nhe3, and clc2c 
expression.

Seawater‑adaptive endocrine control

Growth hormone and insulin‑like growth‑factors

Although much of the early attention given to the Gh/Igf 
system in fishes was driven by its potential application 
to understanding growth in aquaculture settings, the 
osmoregulatory actions of both Gh and Igf1 have 
emerged as important aspects of the hormonal control 
of osmoregulation. In salmonids, Gh is integral to the 
timing of parr-smolt transformation and the associated 
development of SW tolerance (Hoar 1988; Björnsson 
1997; McCormick 2013), and accordingly, plasma Gh 
levels increase during smolting (Boeuf et al. 1989; Prunet 
et al. 1989; Young et al. 1989; McCormick et al. 2007, 
2013; Nilsen et al. 2008). The SW-adaptive role for Gh 
is not restricted to salmonids, as in both salmonid and 
non-salmonid teleost species, exposure to SW corresponds 
with elevated plasma Gh levels alongside with increased 
gh gene expression, Gh protein content, and somatotroph 
numbers in the pituitary (Deane and Woo 2009). As shown 
in Mozambique tilapia, somatotrophs release Gh in direct 

response to hyperosmotic extracellular conditions (Seale 
et al. 2002). Importantly, treatment with Gh upregulates 
branchial Nka activity and improves the SW tolerance of 
several euryhaline teleosts (Madsen 1990a, b; McCormick 
1996; Xu et al. 1997; Mancera and McCormick 1998; Pelis 
and McCormick 2001). Intraperitoneal injection of Gh 
also increases Nkcc1 protein abundance within SW-type 
ionocytes (Pelis and McCormick 2001) and stimulates 
nka-α1b and nkcc1 expression (Tipsmark and Madsen 
2009), although these effects were most pronounced when 
Gh was co-administered with cortisol.

Ghrs are expressed in teleost gills (Gray et al. 1990; 
Yao et al. 1991; Sakamoto and Hirano 1991); however, 
they have yet to be localized to any discrete branchial 
cell-types. It was initially reported that rainbow trout 
acclimating to SW do not exhibit changes in branchial 
Gh binding (Sakamoto and Hirano 1991). More recent 
molecular analyses describe variable branchial ghr 
expression patterns with respect to SW acclimation. In 
Atlantic salmon, ghr expression has been seen to increase 
(Kiilerich et al. 2007a; Nilsen et al. 2008) or not change 
at all (Breves et al. 2017a) during smolting. Likewise, 
there is little consistency in branchial ghr patterns 
following SW exposure, with increases, decreases, 
and no changes in expression all having been observed 
across several species (Kiilerich et al. 2007a; Nilsen et al. 
2008; Breves et al. 2010a, b; Flores and Shrimpton 2012; 
Einarsdóttir et al. 2014; Breves et al. 2017a; Link et al. 
2022). Additionally, Gh-treated gill explants from coho 
salmon (Oncorhynchus kisutch) and Nile tilapia did not 
exhibit changes in Nka activity, or nka-α1b and nkcc1 gene 
expression (McCormick et al. 1991; Breves et al. 2014b). 
Rather than directly regulating the expression of specific 
ion-transporters, Gh may exert cytogenic effects that 
promote the recruitment of branchial ionocytes (Madsen 
1990a, b; Flik et al. 1993; Prunet et al. 1994). For instance, 
Gh-elicited increases in Nka activity and Nkcc1 in Atlantic 
salmon were coincident with the increased abundance of 
ionocytes (Pelis and McCormick 2001).

Gh is the primary regulator of the production and release 
of Igf1 and -2 from the liver (Pierce et al. 2011; Reindl and 
Sheridan 2012). Branchial igf1 receptor (igf1r) expression 
increases during smolting and upon exposure to SW (Nilsen 
et al. 2008; Shimomura et al. 2012), and increased circulat-
ing Igf1 levels correlate with elevated branchial Nka activity 
(Agustsson et al. 2001; McCormick et al. 2007; Shimomura 
et al. 2012). However, not all studies have observed rises in 
plasma Igf1 during smolting (Nilsen et al. 2008; Breves et al. 
2017a). Intraperitoneal injection of Atlantic salmon with 
Igf1 increases SW tolerance but only marginally impacts gill 
Nka activity (McCormick 1996) whereas Nkcc1 in isolated 
Japanese eel (Anguilla japonica) gill cells is stimulated by 
Igf1 (Tse et al. 2007). In addition to exerting osmoregulatory 
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actions as endocrine signals (i.e., secreted from the liver and 
acting upon ionocytes) (Madsen and Bern 1993), Igf1 and 
-2 may also operate as autocrine/paracrine signals (i.e., pro-
duced by and acting upon ionocytes) (Berishvili et al. 2006; 
Tipsmark and Madsen 2009). In Atlantic salmon, Nilsen 
et al. (2008) reported increases in gill igf1 and igf1r during 
smolting and SW acclimation, even when no increase in cir-
culating Igf1 was detected. Similarly, Breves et al. (2017a) 
observed increases in branchial igf2 and igf1ra expression 
in smolts following SW exposure.

The promotion of SW-adaptive ionoregulatory capacities 
by Gh may be best explained by its interaction with cortisol 
to promote both the proliferation of ionocytes and their 
responsiveness to cortisol (McCormick 2013). Studies 
using salmonids demonstrated that cortisol interacts 
with the Gh/Igf system to affect SW-type ionocytes. The 
co-administration of cortisol with either Gh or Igf1 increases 
gill Nka activity to levels beyond those induced by treatment 
with each hormone individually (Madsen 1990a, b; Madsen 
and Korsgaard 1991; McCormick 1996). Scenarios proposed 
to underlie the apparent synergistic actions of cortisol and 
Gh include, (1) Gh promotes Gr abundance in ionocytes, 
thereby increasing the capacity for cortisol to affect ion 
transporter expression, and (2) Gh promotes ionocyte 
proliferation while cortisol promotes the differentiation of 
ionocytes (McCormick 2013). Thus, future work should 
leverage recent insights into the regulators of ionocyte 
differentiation, such as forkhead box transcription factors 
(Hsiao et al. 2007), to elucidate how Gh and cortisol shape 
SW-type ionocyte populations.

Recent studies also describe the potential for Gh and Igf1 
to regulate SW-adaptive branchial processes in lampreys. 
Kawauchi et al. (2002) were the first to identify a lamprey 
Gh capable of stimulating hepatic igf1 expression. Later, Gh-
like cells in the lamprey pituitary were shown to increase in 
abundance during metamorphosis (Nozaki et al. 2008). Dis-
covery of the Ghr, Prlr, and Prl itself in sea lamprey spurred 
recent investigations into their regulatory roles (Gong et al. 
2022). Although pituitary gh and prl expression are upregu-
lated during sea lamprey metamorphosis (Gong et al. 2022), 
it was later shown that gh also increases in the pituitary of 
non-metamorphosing larvae over the same period (Ferreira-
Martins et al. 2023). Thus, such increases in gh expression 
may be seasonal, and it remains unclear whether the same is 
true for pituitary prl expression. In any case, branchial ghr 
and prlr gene expression also increases during metamorpho-
sis (Gong et al. 2020; Ferreira-Martins et al. 2023). Because 
similar increases do not occur in non-metamorphosing larval 
lamprey (Ferreira-Martins et al. 2023), heightened ghr and 
prlr expression likely underlies developmental (as opposed 
to seasonal) processes. Substantial increases in hepatic and 
branchial igf1 expression also occur throughout metamorpho-
sis, and therefore, endocrine as well as autocrine/paracrine 

actions of Igf1 may operate in lamprey (Ferreira-Martins 
et al. 2023). Surprisingly, SW exposure does not affect pitui-
tary gh expression, hepatic igf expression, or branchial ghr 
and igf1 expression (Gong et al. 2020, 2022; Ferreira-Martins 
et al. 2023) and treatment with recombinant Gh does not 
affect branchial ion transporters (Gong et al. 2022). Future 
studies in lamprey are warranted to assess whether Gh and 
Igf1 promote the recruitment of SW-type ionocytes through 
cytogenic actions.

Corticosteroids

In lobe-finned fishes (Sarcopterygii) and tetrapods, cortisol 
(or, in some cases, corticosterone) and aldosterone are 
the products of the corticosteroid biosynthesis pathway 
and the predominant circulating hormones. Cortisol and 
aldosterone separately regulate carbohydrate metabolism 
and osmoregulation by interacting with the Gr and Mr, 
respectively. In all other fishes, corticosteroids and their 
receptors mediate both carbohydrate metabolism and 
osmoregulation. However, important differences exist 
between fish groups, particularly with respect to the 
milieu of corticosteroids in circulation and the identity and 
expression of receptors that mediate their actions. Here, we 
focus on corticosteroids that are known to directly regulate 
branchial processes in fishes.

Non-sarcopterygian fishes lack aldosterone synthase 
(Cyp11b2) and consequently the ability to synthesize aldos-
terone (Baker 2003; Takahashi and Sakamoto 2013). In actin-
opterygian fishes, cortisol is the predominant corticosteroid 
present in circulation, with 11-deoxycorticosterone and cor-
ticosterone present at far lower concentrations (Prunet et al. 
2006). Among the circulating corticosteroids in actinoptery-
gians, cortisol has both glucocorticoid and mineralocorti-
coid activity. To a far lesser extent, 11-deoxycorticosterone 
also exhibits mineralocorticoid-like actions (Takahashi and 
Sakamoto 2013). Chondrichthyan fishes produce a novel ster-
oid biosynthetic product, 1α-hydroxycorticosterone, which 
exhibits some mineralocorticoid-like action (Anderson 2012). 
However, chondrichthyans do not utilize branchial processes 
for bulk ion secretion but rather use the salt-secretory rec-
tal gland (Wright and Wood 2015); therefore, the potential 
ionoregulatory actions of 1α-hydroxycorticosterone will not 
be discussed here. Lampreys apparently lack 11β-hydroxylase 
(Cyp11b1) and cannot produce cortisol or corticosterone 
(Bridgham et al. 2006; Close et al. 2010; Rai et al. 2015). 
Thus, 11-deoxycortisol and 11-deoxycorticosterone are the 
most abundant circulating corticosteroids in lampreys and 
exhibit capacities to regulate branchial ionoregulatory activi-
ties (Close et al. 2010; Shaughnessy et al. 2020).

Chondrichthyan and actinopterygian fishes express both 
classes of corticosteroid receptors (Gr and Mr). In actin-
opterygians, it has long been held that the ionoregulatory 
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actions of corticosteroids result from cortisol acting through 
the Gr. While this remains true, recent discoveries have 
added some nuance to this perspective. For instance, par-
ticular teleosts express two distinct Gr orthologs (Bury et al. 
2003) as well as an Mr (Colombe et al. 2000). Knowledge of 
these three corticosteroid receptor subtypes has motivated 
investigations into how the actions of cortisol and 11-deoxy-
corticosterone are differentially mediated by these recep-
tors (see below). Interestingly, lamprey do not express Gr 
or Mr but rather an ancestral “corticoid receptor” (Cr) that 
facilitates the osmoregulatory actions of 11-deoxycortisol 
(Bridgham et al. 2006; Close et al. 2010; Shaughnessy et al. 
2020).

Using adult sea lamprey, Close et al. (2010) demonstrated 
that 11-deoxycortisol elicits an increase in branchial Nka 
activity. Later, Shaughnessy et al. (2020) described how 
11-deoxycortisol supports the acquisition of SW tolerance 
during metamorphosis. Plasma 11-deoxycortisol levels and 
gill Cr abundance both increase during metamorphosis and 
are positively correlated with gill Nka activity. Accordingly, 
the treatment of mid-metamorphic lamprey with 11-deox-
ycortisol improves SW tolerance and increases gill Nka 
and Nkcc1 protein expression (Shaughnessy et al. 2020; 
Barany et al. 2021a). Likewise, 11-deoxycortisol increases 
the expression of nka and nkcc1 transcripts in gill explants 
(Shaughnessy et al. 2020). Interestingly, 11-deoxycorti-
costerone can elicit modest increases in branchial nka and 
nkcc1 expression but is far less potent than 11-deoxycortisol 
(Shaughnessy et al. 2020). Future studies are warranted to 
further elucidate the ionoregulatory roles of 11-deoxycor-
tisol and 11-deoxycorticosterone, and particularly whether 
they interact with Gh and Prl.

Cortisol has long been known to support the acclimation 
of teleosts to SW. Multiple lines of evidence have described 
this role, including early studies demonstrating that plasma 
cortisol increases during salmonid parr-smolt transformation 
and upon exposure to SW (Fontaine and Hatey 1954; Specker 
and Schreck 1982; Langhorn and Simpson 1986; Shrimpton 
et al. 1994), and that SW tolerance is increased following 
cortisol treatment (Bisbal and Specker 1991). Elevations 
in plasma cortisol following exposure to SW also occur in 
numerous non-salmonid species (McCormick 2001). Early 
work described the direct action of cortisol to increase gill 
Nka activity, which correlated with the development of SW 
tolerance during smolting (Langhorn and Simpson 1986; 
McCormick and Saunders 1987). Additional studies showed 
that gill Nka activity can be impacted in vivo by cortisol 
injections (Pickford et al. 1970b; Bisbal and Specker 1991; 
McCormick et al. 1991) and in vitro by exposing gill explants 
to cortisol-containing media (McCormick and Bern 1989).

More recently, cortisol was shown to regulate proteins 
and gene transcripts expressed by SW-type ionocytes, 
such as Nka, Nkcc1, and Cftr (Fig. 3). Atlantic salmon 

interperitoneally injected with cortisol increase the expres-
sion of nka-α1b (McCormick et al. 2008; Tipsmark and 
Madsen 2009; Breves et al. 2020, 2024) and the protein 
abundance of Nka and Nkcc1 (Pelis and McCormick 2001). 
In gill explants from FW- and SW-acclimated Atlantic 
salmon, cortisol increases nka-α1b and nkcc1 expression 
(Tipsmark et al. 2002; Kiilerich et al. 2007b, 2011a, b, c). 
In vivo treatment with cortisol increases cftr1 expression in 
Atlantic salmon parr and smolts (Singer et al. 2003; Breves 
et al. 2020, 2024), and in vitro exposure of gill explants to 
cortisol increases cftr1 and nkcc1 (Kiilerich et al. 2007b). 
Likewise, cortisol promotes cftr1 and nkcc1 expression in 
the gills of FW-acclimated trout and medaka (Tipsmark et al. 
2002; Kiilerich et al. 2011a; Bossus et al. 2017). In tilapia 
and striped bass (Morone saxatilis), cortisol similarly pro-
motes branchial nkcc1 expression (Kiilerich et al. 2011c). 
Cortisol also promotes components of SW-type ionocytes in 
non-teleost models, such as Nka and Nkcc1 in Atlantic and 
Persian sturgeon (Acipenser oxyrhynchus and A. persicus) 
(Khodabandeh et al. 2009; McCormick et al. 2020).

Fewer studies have examined the molecular actions 
of 11-deoxycorticosterone, as it circulates at far lower 
concentrations than cortisol. Intraperitoneal injection of 

Fig. 3   Schematic diagram of SW (seawater)-type ionocytes show-
ing the stimulatory (arrows with a “+”) and inhibitory (blocked lines 
with a “−”) effects of cortisol (Cort) (see text for citations). Apical 
and basolateral sides are presented at the top and bottom of cells, 
respectively. Aqp3 aquaporin 3, Cftr1 cystic fibrosis transmembrane 
conductance regulator 1, Cldn10s claudin 10 isoforms, Cort cortisol, 
Nka Na+/K+-ATPase, Nkcc1 Na+/K+/2Cl− cotransporter 1, TJ tight-
junction
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11-deoxycorticosterone has no effect on SW tolerance 
or branchial nka-α1a and -α1b expression in Atlantic 
salmon (McCormick et al. 2008). The in vitro effects of 
11-deoxycorticosterone vary depending on whether treated 
filaments are collected from salmon acclimated to either 
FW or SW. 11-deoxycorticosterone is more effective in 
stimulating nka-α1a versus -α1b expression (Kiilerich et al. 
2007b, 2011a, b), although this effect is generally far less 
consistent than that of cortisol.

The role of the Gr in mediating the ionoregulatory 
actions of cortisol in teleosts has also received considerable 
attention. Early studies demonstrated that a corticosteroid 
receptor expressed in the gills with high binding affinity 
for cortisol increases during parr-smolt transformation and 
SW acclimation (Weisbart et al. 1987; Maule and Schreck 
1990; Shrimpton and Randall 1994; Shrimpton et al. 1994; 
Marsigliante et  al. 2000). Moreover, Gr expression is 
strongly correlated with the capacity for cortisol to stimulate 
branchial Nka activity (Shrimpton and McCormick 1999). 
Following the discovery of two distinct Grs (Bury et al. 
2003) and an Mr (Colombe et al. 2000; Sturm et al. 2005) 
in teleost fishes, studies using selective receptor antagonists 
investigated their individual roles in mediating the actions 
of cortisol and 11-deoxycorticosterone. It was proposed that 
the Gr and Mr underlie the duality of cortisol operating as 
a FW- and SW-adapting hormone (Prunet et al. 2006). In 
support of this, the upregulation of gr expression occurs 
in the gills of several species during smolting or following 
SW exposure (Mazurais et al. 1998; Mizuno et al. 2001; 
Kiilerich et al. 2007a; Nilsen et al. 2008; Yada et al. 2014; 
Bernard et al. 2020), and a potential role for the Mr in FW 
ionoregulation has been suggested (Sloman et al. 2001; Scott 
et al. 2005; Kiilerich et al. 2011a). The ionoregulatory role 
of the Mr in FW may entail activation by both cortisol and 
11-deoxycorticosterone, as the Mr is potently activated 
by both hormones (Sturm et al. 2005; Katsu et al. 2018). 
Investigations into the regulation of gr and mr during 
smolting or SW acclimation have generally presented 
mixed results. In some studies, only the gr is upregulated 
during smolting (Kiilerich et al. 2007a, 2011b; Nilsen et al. 
2008), and in others, the transcriptional upregulation of both 
receptors occurred (Yada et al. 2014; Bernard et al. 2020). 
Similarly, there seems to be little consistency in how gr and 
mr are transcriptionally regulated during SW acclimation in 
salmonids (Kiilerich et al. 2007b, 2011a; Nilsen et al. 2008; 
Flores and Shrimpton 2012) as well as in non-salmonids 
(Aruna et al. 2012a, b).

Several in vivo and in vitro studies have employed recep-
tor blockade approaches, including the cotreatment of cor-
ticosteroids with mammalian Gr and Mr antagonists (e.g., 
RU486 and spironolactone, respectively). Cotreatment with 
RU486 blocks the upregulation of branchial nka-α1a and 
-α1b by cortisol, whereas cotreatment with spironolactone 

has no effect on SW tolerance or nka-α1a and -α1b expres-
sion (McCormick et  al. 2008). Kiilerich et  al. (2007b) 
demonstrated using Atlantic salmon gill explants that both 
RU486 and spironolactone can block the ability of cortisol to 
upregulate nka-α1a, -α1b, and cftr1. However, these results 
were not consistent across species or salinities (Kiilerich 
et al. 2007b, 2011b, c). In teleosts, RU486 antagonizes both 
Gr1 and -2, with more potent effects on Gr1 (Bury et al. 
2003). On the other hand, spironolactone is now known to 
agonize the fish Mr, activating it with similar potency as 
cortisol, 11-deoxycorticosterone, and aldosterone (Sugi-
moto et al. 2016; Fuller et al. 2019). Thus, studies which 
use RU486 and spironolactone to differentially block the 
Gr and Mr should be interpreted with caution. Considering 
the challenges associated with pharmacologically targeting 
the fish Gr and Mr, advanced molecular approaches using 
transcriptional knockdown or transgenic knockout have 
emerged to investigate the Gr and Mr (Faught and Vijayan 
2018; Yan and Hwang 2019). To date, these approaches have 
mostly been leveraged to investigate the metabolic, devel-
opmental, and ionoregulatory actions of corticosteroids in 
zebrafish (Faught and Vijayan 2018; Yan and Hwang 2019), 
which cannot tolerate SW. However, Japanese medaka offer 
a promising euryhaline model for knockdown or knockout 
approaches (Yan and Hwang 2019) and is therefore poised to 
delineate the Gr- and Mr-mediated actions of corticosteroids 
on SW-type ionocytes.

In tetrapods, the interaction of aldosterone with the Mr 
is facilitated by coexpression of the Mr with the cortisol-
inactivating enzyme, 11β-hydroxylase 2 (Cyp11b2). Inter-
estingly, a strong transcriptional upregulation of cyp11b2 
occurs in the gills of smolting Atlantic salmon (Kiilerich 
et al. 2007a; Nilsen et al. 2008). It was also shown in trout 
branchial epithelial cells that cortisol increases cyp11b2 
expression (Kolosov and Kelly 2019). These findings sug-
gest the operation of a tissue-level mechanism to regulate 
cortisol signaling. A better understanding of which branchial 
cell-types specifically express cyp11b2 is needed to assess 
its role in tuning the actions of cortisol on ionocytes.

The role of corticosteroids in regulating permeability 
of the branchial epithelium has also received considerable 
attention. This work has largely focused on the FW-adaptive, 
rather than the SW-adaptive, roles of corticosteroids, as the 
increased expression of tight-junction proteins generally 
promotes epithelial tightening. However, “leaky” tight-
junction complexes composed of Cldn10s contribute to 
SW-adaptation by facilitating the paracellular excretion 
of Na+ (Tipsmark et  al. 2008b; Bui and Kelly 2014). 
Acclimation to SW increases the expression of cldn10 
isoforms in puffer fish (Tetraodon nigroviridis) (Bui et al. 
2010) and exposing gill explants to cortisol stimulates 
multiple cldn10s in medaka (Bossus et al. 2017). Cortisol 
and 11-deoxycorticosterone generally upregulate the 
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expression of Cldns through processes mediated by both the 
Gr and Mr (Tipsmark et al. 2009; Bui et al. 2010; Chasiotis 
and Kelly 2011, 2012; Kelly and Chasiotis 2011; Bossus 
et al. 2017; Kolosov et al. 2017b; Kolosov and Kelly 2019). 
In sea lamprey, multiple claudins have been identified that 
are expressed in the gill, and among those investigated, 
cldn3 and -10 orthologs increase their expression after 
exposure to ion-poor water and exhibit decreases during SW 
acclimation (Kolosov et al. 2017a, 2020). Future studies in 
lamprey should seek to address whether 11-deoxycortisol 
and 11-deoxycorticosterone control branchial barrier 
functions via Cldns.

Cortisol was the first hormone linked with the expression 
of branchial Aqps. FW-acclimated eels infused with 
cortisol show a marked decrease in the expression of aqp3 
in the gill (Cutler et al. 2007) (Fig. 3). Choi et al. (2013) 
subsequently reported that cortisol diminishes branchial 
aqp3 and -8 expression in sockeye salmon (Oncorhynchus 
nerka). These patterns suggest that SW-induced increases 
in plasma cortisol are responsible for rapidly attenuating 
aqp3 expression upon entry into hyperosmotic environments 
(Cutler and Cramb 2002; Cutler et al. 2007). Furthermore, 
cortisol blocks the stimulatory action of Prl on aqp3 (Breves 
et al. 2016). The regulation of branchial Aqp3 is a clear 
example of antagonistic, rather than synergistic, roles for 
cortisol and Prl in promoting salinity acclimation.

Thyroid hormones

In addition to supporting FW acclimation ("Thyroid 
hormones"), there is evidence that thyroid hormones promote 
SW-adaptive processes by acting directly on ionocytes and 
through interactions with the Gh/Igf system (McCormick 
2001). For example, coho salmon and mummichogs increase 
plasma T4 levels in response to SW (Knoeppel et al. 1982; 
Specker and Kobuke 1987), and Atlantic salmon and 
summer flounder (Paralichthys dentatus) treated with T4 or 
T3 exhibit increased SW tolerance (Refstie 1982; Saunders 
et  al. 1985; Schreiber and Specker 1999). Accordingly, 
when summer flounder and mummichogs are treated 
with thiourea (an inhibitor of T4 synthesis), they exhibit 
diminished hyposmoregulatory capacities (Knoeppel et al. 
1982; Schreiber and Specker 1999). Thiourea diminishes the 
SW tolerance of flounder by disrupting the thyroid-mediated 
development of SW-type ionocytes during metamorphosis 
(Schreiber and Specker 2000). To our knowledge, there has 
been no direct assessment of whether the rapid recruitment 
of SW-type ionocytes that occurs in euryhaline species when 
they encounter SW is linked with thyroid hormone signaling.

Future perspectives

The availability of genomic resources and molecular tools 
over the last two decades has given rise to an increasingly 
mechanistic understanding of how hormones regulate 
ionocytes. This trend will undoubtedly continue with 
manipulative molecular tools such as gene editing ushering 
in new opportunities to link hormones and their cognate 
receptors with specific ion transporters. Zebrafish have 
already proven to be a valuable model for this purpose, 
supporting progress toward understanding the ontogeny 
and function of ion-absorptive ionocytes (Chen et  al. 
2019). Nonetheless, the poor salinity tolerance of zebrafish 
precipitates the need for a similarly amenable euryhaline 
model, a need that Japanese medaka seem poised to fill 
(Yan and Hwang 2019). In a similar vein, refined methods 
for primary cell culture of the branchial epithelium would 
accelerate the use of advanced molecular manipulations; 
however, progress in this endeavor has been limited.

The various modes by which endocrine factors can 
affect branchial processes deserve continued attention. For 
example, it is necessary to better resolve the cytogenic 
(controlling ionocyte abundance), molecular (controlling 
the expression of ion transporters), and physiological 
(controlling the function of ion transporters) actions 
of hormones (Breves et  al 2014a; Shir-Mohammadi 
and Perry 2020). Important in this endeavor will be 
the characterization of, (1) the factors influencing the 
differentiation of SW-type ionocytes from precursor 
cells (analogous to how Foxi3a and -b regulate FW-type 
ionocyte differentiation in zebrafish), (2) the regulatory 
elements in the promoters and distal regulatory regions 
of genes encoding ion transporters, and (3) the functional 
elements of the ion transporters themselves (such as the 
motifs facilitating ATP binding and phosphorylation).

Despite the recent progress, there are still many gaps 
to fill in the collective understanding of how ionocytes 
operate—this is especially true for non-teleost fishes. For 
example, it stands unresolved whether Slc26-family anion 
exchangers, Clc family Cl− channels, and Cftr sustain 
Cl− transport in the ionocytes of lampreys and sturgeons 
(Ferreira-Martins et al. 2021; Shaughnessy and Breves 
2021). We foresee that some of these transporters/channels 
will emerge as hormone targets. The recent expansion of 
genomic resources in non-teleosts will certainly support 
work of this nature (Amemiya et al. 2013; Smith et al. 
2013, 2018; Braasch et  al. 2016; Vialle et  al. 2018; 
Cheng et al. 2019; Du et al. 2020; Yamaguchi et al. 2020; 
Marlétaz et al. 2023).

Finally, future work should seek to better understand 
how systemic hormones interact with the osmotic stress 
signaling cascades that permit ionocytes to directly 
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perceive salinity changes (Fiol and Kültz 2007). For 
instance, cortisol promotes the expression of osmotic 
stress transcription factor 1 (Ostf1) during the acute 
phase of SW acclimation (McGuire et al. 2010). While 
Prl inhibits the activity of SW-type ionocytes (Fig. 2), it 
remains to be seen whether Prl dampens the expression 
of intracellular and paracrine factors that respond 
to hyperosmotic conditions (e.g., Ostf1, serum- and 
glucocorticoid-inducible kinase 1, 14-3-3 proteins, 
MAPKs, endothelin 1, interleukins, and tumor necrosis 
factor α) (Fiol and Kültz 2007; Notch et al. 2012; Kültz 
2015; Lai et al. 2015). Given the multifactorial nature of 
osmotic stress signaling (Fiol and Kültz 2007), and the 
myriad hormones that impact branchial processes (Evans 
et al. 2005; Takei et al. 2014), it will be interesting to learn 
the extent to which ionocytes are a hub for interactions 
between intracellular, paracrine, and systemic signals.
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